Red Swarm: Smart Mobility in Cities with EAs

Daniel H. Stolfi
dhstolfi@lcc.uma.es
http://www.danielstolfi.com

Enrique Alba
eat@lcc.uma.es
http://www.lcc.uma.es/~eat

University of Malaga
July 2013
Table of Contents

1. Introduction
2. Proposal
3. Experiments
4. Conclusions
Introduction

People are living or thinking about moving to big cities

- A higher number of vehicles are moving by the streets
- The number of traffic jams is rising
- Tons of greenhouse effect gases are emitted to the atmosphere
- The citizens' quality of life is decreasing

The optimization of road traffic is necessary in modern big cities
Red Swarm

Our Red Swarm consists of:

- Several spots distributed throughout the city
 - Installed at traffic lights
 - Linked to vehicles by using Wi-Fi
- Our Optimization Algorithm
- Our Rerouting Algorithm
- On Board Units (OBU)
 - Installed inside vehicles
 - Smartphones or tablets could be used instead
The Evolutionary Algorithm produces a configuration for the Red Swarm spots.

The configured Red Swarm spots are deployed in several junctions of the city.
Rerouting (t = 10 s.)

Experts' solution

Red Swarm
Rerouting (t = 11 s.)

Experts’ solution

Red Swarm

Red Swarm: Smart Mobility in Cities with EAs
Rerouting ($t = 12$ s.)

Experts’ solution

Red Swarm
Rerouting ($t = 13$ s.)

Experts’ solution

Red Swarm
Rerouting (t = 14 s.)

Experts’ solution

Red Swarm

Daniel H. Stolfi and Enrique Alba

Red Swarm: Smart Mobility in Cities with EAs
Rerouting ($t = 15$ s.)

Experts’ solution

Red Swarm
Rerouting (t = 16 s.)

Experts’ solution

Red Swarm
Rerouting (t = 17 s.)

Experts’ solution

Red Swarm
Rerouting (t = 18 s.)

Experts’ solution

Red Swarm
Rerouting (t = 19 s.)

Experts’ solution

Red Swarm
Rerouting (t = 20 s.)

Experts’ solution

Red Swarm
Rerouting (t = 21 s.)

Experts’ solution

Red Swarm
Rerouting ($t = 22$ s.)

Experts’ solution

Red Swarm
We have worked with **real maps** imported from OpenStreetMap

We have added 10 Red Swarm spots in junctions controlled by a traffic light

We have imported the map into SUMO

We have defined traffic flows for vehicles (experts' solution)

This process can be adapted to any modern city in the world

NETCONVERT and **DUAROUTER** are part of the SUMO package
Scenario: Malaga

MALAGA (SPAIN)

- **Real Scenario**
 - 261 traffic lights
 - 10 Red Swarm spots
 - 800 vehicles
 - 4 vehicle types
 - 3 different traffic patterns (Scen1, Scen2 & Scen3)

Our goal is to reduce the travel time of the vehicles in high density conditions.
Evolutionary Algorithm

(10+2)-EA

The fitness value is calculated by using the SUMO traffic simulator.

The rerouting produced by the Red Swarm spots is implemented by using TraCI and the Rerouting Algorithm which runs in each spot.

The result of the EA is a configuration for all the Red Swarm spots placed in the city.
SENSORS

- They represent the inputs to Red Swarm spots in the simulated scenario.
- Vehicles trigger the rerouting algorithm when they are detected by a sensor.
- In a real city they would be radio links.
Evolutionary Algorithm: Representation (Example)

For example, if a vehicle which is going to **Destination 2** is detected by **Sensor 1**, one of the routes from R_{12_1} to R_{12_k} will be chosen by the Rerouting Algorithm, depending on the values of the probabilities P_{12_1} to P_{12_k}.
Evolutionary Algorithm: Representation

REPRESENTATION

- R_{SDk}: Available routes from **Sensors** to **Destinations** and to other **spots**

- Each new route will be selected by the Rerouting Algorithm depending on the probabilities

```plaintext
Solution vector made up of 1119 floats (probabilities)
```

- **Conceptual representation**

![Conceptual representation diagram](image-url)
Evolutionary Algorithm: Fitness Function

FITNESS FUNCTION

\[F = \alpha_1 (N - n_{trips}) + \alpha_2 \frac{\sum t_{trip}}{N} + \alpha_3 \frac{\sum t_{delay}}{N} \]

- **N**: Total number of vehicles (800 in this work)
- **n_{trips}**: Number of vehicles which have ended their itineraries
- **t_{trip}**: Trip time of each vehicle
- **t_{delay}**: Waiting time of each vehicle before entering the analyzed zone

The three terms are weighted by \(\alpha_1, \alpha_2,\) and \(\alpha_3,\) respectively

We want to minimize the fitness value (the lower the better)
Evolutionary Algorithm: Recombination Operator

RECOMBINATION OPERATOR

- We use the standard two-point recombination
- The offspring are obtained by exchanging a range of sensor configurations from the selected parents

![Diagram showing the recombination operator process]

- TPX
Evolutionary Algorithm: Mutation Operators

MUTATION OPERATOR

Changes the probabilities of the routes in the sensor configurations

1) **All Destinations - One Sensor**

It changes all probabilities in a Sensor block (i.e. all the probabilities in Sensor 4)

2) **One Destination - One Sensor**

It changes probabilities in a Destination block in a Sensor block (i.e. only the probabilities of Destination 8 in Sensor 4)
The 800 vehicles leave the city in a lower time when we use Red Swarm.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Expert’s solution</th>
<th>Red Swarm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sim1</td>
<td>Sim2</td>
</tr>
<tr>
<td># Completed Trips</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Total Time (s)</td>
<td>1283</td>
<td>1253</td>
</tr>
<tr>
<td>Minimum Fitness</td>
<td>532.9</td>
<td>530.8</td>
</tr>
</tbody>
</table>

Results show a reduction of the average waiting time and the average travel time.

Vehicles have to travel a longer distance because they are using alternative routes.
Results: Simulation Time vs. Number of Vehicles

- Figures show that the higher the number of vehicles is, the more effective Red Swarm becomes.
- Under the threshold, Red Swarm still being useful.
- Advantages are evident when the traffic density raises.

Travel Time (Scen1)

Travel Time (Scen2)

Travel Time (Scen3)
Generalization of Results

- This figure shows the fitness values of the execution of **Red Swarm** in 30 extra scenarios compared with the experts' solution.

- Red Swarm has not only worked in all these scenarios but has also achieved lower travel times in 20 of them (66.7%).

![Fitness comparison graph](image)
Conclusions

- This is an innovative approach to the prevention of traffic jams
- The results confirm road traffic can be improved by using **Red Swarm**
- We have reduced the travel times and waiting times of the vehicles
- Currently, we are working on:
 - The expansion of the analyzed region
 - Collecting information from vehicles (on-line and historical data of the city)
 - The reduction of greenhouse gas emissions
http://neo.lcc.uma.es
http://en.danielstolfi.com/redswarm/
http://neo.lcc.uma.es
http://en.danielstolfi.com/redswarm/
dhstolfi@lcc.uma.es

Questions?